16 research outputs found

    Multimodal and disentangled representation learning for medical image analysis

    Get PDF
    Automated medical image analysis is a growing research field with various applications in modern healthcare. Furthermore, a multitude of imaging techniques (or modalities) have been developed, such as Magnetic Resonance (MR) and Computed Tomography (CT), to attenuate different organ characteristics. Research on image analysis is predominately driven by deep learning methods due to their demonstrated performance. In this thesis, we argue that their success and generalisation relies on learning good latent representations. We propose methods for learning spatial representations that are suitable for medical image data, and can combine information coming from different modalities. Specifically, we aim to improve cardiac MR segmentation, a challenging task due to varied images and limited expert annotations, by considering complementary information present in (potentially unaligned) images of other modalities. In order to evaluate the benefit of multimodal learning, we initially consider a synthesis task on spatially aligned multimodal brain MR images. We propose a deep network of multiple encoders and decoders, which we demonstrate outperforms existing approaches. The encoders (one per input modality) map the multimodal images into modality invariant spatial feature maps. Common and unique information is combined into a fused representation, that is robust to missing modalities, and can be decoded into synthetic images of the target modalities. Different experimental settings demonstrate the benefit of multimodal over unimodal synthesis, although input and output image pairs are required for training. The need for paired images can be overcome with the cycle consistency principle, which we use in conjunction with adversarial training to transform images from one modality (e.g. MR) to images in another (e.g. CT). This is useful especially in cardiac datasets, where different spatial and temporal resolutions make image pairing difficult, if not impossible. Segmentation can also be considered as a form of image synthesis, if one modality consists of semantic maps. We consider the task of extracting segmentation masks for cardiac MR images, and aim to overcome the challenge of limited annotations, by taking into account unannanotated images which are commonly ignored. We achieve this by defining suitable latent spaces, which represent the underlying anatomies (spatial latent variable), as well as the imaging characteristics (non-spatial latent variable). Anatomical information is required for tasks such as segmentation and regression, whereas imaging information can capture variability in intensity characteristics for example due to different scanners. We propose two models that disentangle cardiac images at different levels: the first extracts the myocardium from the surrounding information, whereas the second fully separates the anatomical from the imaging characteristics. Experimental analysis confirms the utility of disentangled representations in semi-supervised segmentation, and in regression of cardiac indices, while maintaining robustness to intensity variations such as the ones induced by different modalities. Finally, our prior research is aggregated into one framework that encodes multimodal images into disentangled anatomical and imaging factors. Several challenges of multimodal cardiac imaging, such as input misalignments and the lack of expert annotations, are successfully handled in the shared anatomy space. Furthermore, we demonstrate that this approach can be used to combine complementary anatomical information for the purpose of multimodal segmentation. This can be achieved even when no annotations are provided for one of the modalities. This thesis creates new avenues for further research in the area of multimodal and disentangled learning with spatial representations, which we believe are key to more generalised deep learning solutions in healthcare

    Learning to synthesise the ageing brain without longitudinal data

    Get PDF
    How will my face look when I get older? Or, for a more challenging question: How will my brain look when I get older? To answer this question one must devise (and learn from data) a multivariate auto-regressive function which given an image and a desired target age generates an output image. While collecting data for faces may be easier, collecting longitudinal brain data is not trivial. We propose a deep learning-based method that learns to simulate subject-specific brain ageing trajectories without relying on longitudinal data. Our method synthesises images conditioned on two factors: age (a continuous variable), and status of Alzheimer's Disease (AD, an ordinal variable). With an adversarial formulation we learn the joint distribution of brain appearance, age and AD status, and define reconstruction losses to address the challenging problem of preserving subject identity. We compare with several benchmarks using two widely used datasets. We evaluate the quality and realism of synthesised images using ground-truth longitudinal data and a pre-trained age predictor. We show that, despite the use of cross-sectional data, our model learns patterns of gray matter atrophy in the middle temporal gyrus in patients with AD. To demonstrate generalisation ability, we train on one dataset and evaluate predictions on the other. In conclusion, our model shows an ability to separate age, disease influence and anatomy using only 2D cross-sectional data that should be useful in large studies into neurodegenerative disease, that aim to combine several data sources. To facilitate such future studies by the community at large our code is made available at https://github.com/xiat0616/BrainAgeing

    Factorised spatial representation learning: application in semi-supervised myocardial segmentation

    Full text link
    The success and generalisation of deep learning algorithms heavily depend on learning good feature representations. In medical imaging this entails representing anatomical information, as well as properties related to the specific imaging setting. Anatomical information is required to perform further analysis, whereas imaging information is key to disentangle scanner variability and potential artefacts. The ability to factorise these would allow for training algorithms only on the relevant information according to the task. To date, such factorisation has not been attempted. In this paper, we propose a methodology of latent space factorisation relying on the cycle-consistency principle. As an example application, we consider cardiac MR segmentation, where we separate information related to the myocardium from other features related to imaging and surrounding substructures. We demonstrate the proposed method's utility in a semi-supervised setting: we use very few labelled images together with many unlabelled images to train a myocardium segmentation neural network. Specifically, we achieve comparable performance to fully supervised networks using a fraction of labelled images in experiments on ACDC and a dataset from Edinburgh Imaging Facility QMRI. Code will be made available at https://github.com/agis85/spatial_factorisation.Comment: Accepted in MICCAI 201

    Disentangled representation learning in cardiac image analysis

    Get PDF
    Typically, a medical image offers spatial information on the anatomy (and pathology) modulated by imaging specific characteristics. Many imaging modalities including Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) can be interpreted in this way. We can venture further and consider that a medical image naturally factors into some spatial factors depicting anatomy and factors that denote the imaging characteristics. Here, we explicitly learn this decomposed (disentangled) representation of imaging data, focusing in particular on cardiac images. We propose Spatial Decomposition Network (SDNet), which factorises 2D medical images into spatial anatomical factors and non-spatial modality factors. We demonstrate that this high-level representation is ideally suited for several medical image analysis tasks, such as semi-supervised segmentation, multi-task segmentation and regression, and image-to-image synthesis. Specifically, we show that our model can match the performance of fully supervised segmentation models, using only a fraction of the labelled images. Critically, we show that our factorised representation also benefits from supervision obtained either when we use auxiliary tasks to train the model in a multi-task setting (e.g. regressing to known cardiac indices), or when aggregating multimodal data from different sources (e.g. pooling together MRI and CT data). To explore the properties of the learned factorisation, we perform latent-space arithmetic and show that we can synthesise CT from MR and vice versa, by swapping the modality factors. We also demonstrate that the factor holding image specific information can be used to predict the input modality with high accuracy. Code will be made available at https://github.com/agis85/anatomy_modality_decomposition
    corecore